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5 
Geostrophic Balance 
 
http://www.staff.science.uu.nl/~delde102/AtmosphericDynamics.htm 
 
 
The subject of this chapter is considered by Carl-Gustav Rossby and Adrian Gill to be of utmost importance 
 
To the author’s knowledge no theory exists which satisfactorily describes the mechanism whereby the mass 
and pressure distributions adjust themselves to the velocity distribution, although the problem is of great 
practical importance; its solution would be of great value not only to physical oceanographers but also to 
meteorologists in connection with the interpretation of the so-called dynamic pressure formations (i.e. warm 
anticyclones and cold cyclones). 
C.-G. Rossby (1937), On the mutual adjustment of pressure and velocity distributions in certain simple current 
systems. J.Marine Res., 1, p16. 
 
Chapter 7, perhaps the most important in the whole book, introduces effects that are due to the earth's rotation. 
Although Laplace included these in his tidal equations in 1778, and Kelvin investigated wave motions in a 
rotating fluid a hundred years later, some of the fundamental ideas were developed relatively recently by 
Rossby in the 1930's. The Rossby adjustment problem brings out many facets of the behavior of rotating fluids, 
such as the tendency to attain "geostrophic equilibrium", the significance of "potential vorticity", and the 
importance of the lengthscale known as the "Rossby radius of deformation". 
A.E. Gill (1982), Atmosphere-Ocean Dynamics, Academic Press, p. xii. 
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5.1 The shallow water equations  
 
In 1916 Sir Napier Shaw introduced the term “geostrophic” to designate the equilibrium 
between the pressure gradient force and the Coriolis force. On a scale of hundreds of 
kilometres or larger the atmosphere and the ocean are very frequently observed to be in 
approximate geostrophic equilibrium  (figure 1.77). As far as the atmosphere is concerned, 
this has been known at least since Christophorus Buys Ballot deduced this from observations  
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FIGURE 5.1. Carl-Gustav Rossby on the front cover of Time-magazine of 17 December 1956 as a celebrity. 
 
in 1857 in the Netherlands162. Here we discuss the reasons for this remarkable fact. 
 The question how a rotating fluid adjusts to the state of geostrophic equilibrium or 
balance was addressed and answered first by Carl Gustav Rossby (figure 5.1) in the 1930’s, 
surprisingly long after Buys Ballot’s work was published. This chapter is inspired especially 
by Rossby’s work, and the work by Adrian Gill (1982) (see the section, further reading, at 
the end of this chapter). 

                                                
162 M. Buys-Ballot, "Note sur le rapport de l'intensite et de la direction du vent avec les ecarts simultanes du 
barometre", Comptes Rendus, Vol. 45 (1857), pp. 765–768. (Buys Ballot is in general known as C.H.D. Buys 
Ballot. The initial M in this case stands for Monsieur). 
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FIGURE 5.2. Schematic diagram of the two-layer model (see the text for further explanation). The basic 
potential vorticity gradient (south to north) is positive in the upper layer and negative in the lower layer. 
 
 Meteorologists are interested in the question how the velocity field comes into 
geostrophic balance with the mass- (or pressure-) field, after the mass field has been 
disturbed by a source of heat. Oceanographers are interested in the reverse question, that is, 
how the mass field adjusts to the velocity field after the velocity field has been altered by 
wind-stress at the ocean’s surface. Here we focus in particular on the first question, adopting 
a simplified layer-model of a rotating stratified fluid, following the pioneering work of 
Rossby and Gill. The two-layer version of this model is illustrated in figure 5.2. In each 
layer the density is constant. This certainly appears as a rather drastic approximation, but we 
must keep in mind the words of John Green on "academic modelling", that are reproduced at 
the beginning of chapter 2. The model atmosphere shown in figure 5.2 contains some 
important physical elements, namely density-stratification and rotation, the interplay of 
which we intend to investigate in this chapter. Of course, two isentropic layers (=layers of 
constant potential temperature) would be a better representation of the atmosphere163. 
However, we do not want to complicate matters by retaining the effects of compressibility. 
The 2-layer model that is illustrated in figure 5.2 can be viewed as the "E. Coli" or “fruit 
fly” of Geophysical Fluid Dynamics. Like in Biology, where much is learned from the study 
of relatively very simple organisms, like bacteria, fruit flies or rats, in Geophysical Fluid 
Dynamics much of what we learn from the rotating constant density layer model is directly 
relevant to deciphering the workings of the more complex real system164. 
 First we derive the equations governing the motion in each layer. We begin by assuming 
hydrostatic balance. Therefore, pressure in each layer can be written in terms of the layer 

                                                
163 See e.g. Verkley, W.T.M., 2000: On the vertical velocity in an isentropic layer. Q.J.R.Meteorol.Soc., 126, 
263-274. 
164 See the very interesting article by Isaac M. Held, 2005: The gap between simulation and understanding in 
climate modelling. Bull.Amer.Meteorol.Soc., November 2005, 1609-1614. 
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thickness as, 
 

€ 

p1 = p0 + ρ2gh2 + ρ1g hs + h1 − z( ) ≡ p0 + ρ1Φ1;      (5.1a) 
 

€ 

p2 = p0 + ρ2g hs + h1 + h2 − z( ) ≡ p0 + ρ2Φ2 .     (5.1b) 
 
Here z is the height above a reference level (e.g. sea-level), p0 is the pressure at z=hs+h1+h2, 
with hs the height of the Earth's surface relative to the reference level. The geopotential in 
each layer is defined as 
 

€ 

Φ1 ≡ εgh2 + g hs + h1 − z( );        (5.2a) 
 

€ 

Φ2 ≡ g hs + h1 + h2 − z( ),         (5.2b) 
 
where  
 

€ 

ε ≡
ρ2
ρ1

, with 

€ 

ρ2 < ρ1.         (5.3) 

 
Neglecting the effects due to the curvature of the Earth (implying among other that the 
Coriolis parameter, f, is constant) and neglecting the frictional force, the equations of 
conservation of momentum for each layer are (if p0 is constant) 
 

€ 

dui
dt

= fvi −
∂Φi
∂x

;          (5.4a) 

 

€ 

dvi
dt

= − fui −
∂Φi
∂y

.         (5.4b) 

 
Here, i=1 refers to the lower layer and i=2 refers to the upper layer. Eqs 5.2a,b provide the 
relation between the geopotential and the thickness of each layer. 
 The principle of incompressibility is used to close this system of equations. Therefore, 
 

€ 

∂ui
∂x

+
∂vi
∂y

+
∂wi
∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0  

 
The left hand side of this equation can be integrated vertically over the total depth of a layer 
as follows: 
 

€ 

∂ui
∂x

+
∂vi
∂y

+
∂wi
∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

z

z+hi
∫ dz =

∂ui
∂x

+
∂vi
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ hi + dwi

z

z+hi
∫ =

∂ui
∂x

+
∂vi
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ hi + w z + hi( ) − w z( ) =

∂ui
∂x

+
∂vi
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ hi +

dhi
dt
. 

 
Therefore, 
 

€ 

dhi
dt

= −hi
∂ui
∂x

+
∂vi
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;         (5.4c) 
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Eqs. 5.4a, 5.4b and 5.4c represent the "shallow water equations". From these equations it 
can be deduced that 
 

€ 

dζpot i
dt

= 0,          (5.5) 

 
where 
 

€ 

ζpot i ≡
ζi + f
hi

          (5.6) 

 
is the potential vorticity, and 
 

€ 

ζi ≡
∂vi
∂x

−
∂ui
∂y

 

 
is the relative vorticity. Eq. 5.5 implies that potential vorticity is conserved for a column 
of fluid.  
 
 
5.2 Geostrophic adjustment, potential vorticity and the invertibility 
principle 
 
Let us first illustrate some essential characteristics of adjustment to geostrophic balance in a 
simplified case by assuming that ρ2=0, p0=0, hs=0 and neglecting derivatives with respect to 
y. The system reduces to one layer, which conforms to the following equations of motion 
and continuity 
 

€ 

du
dt

= −g ∂h
∂x

+ fv ,          (5.7a) 

€ 

dv
dt

= − fu ,          (5.7b) 

€ 

dh
dt

= −h ∂u
∂x

.          (5.7c) 

 
The subscript i has been dropped.  
  Suppose that we extract a specified volume of mass from this layer. To incorporate this 
effect into the model we set h=h+η0 at t=0, where h is a constant reference height and where 
 

€ 

η =η0 exp −
x − x0
a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2⎧ 

⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 .        (5.8) 

 
This represents a bell-shaped perturbation in height of the free surface centred at x=x0 with 
the parameter a representing the horizontal scale and the parameter η0 representing the 
maximum amplitude of the perturbation. 
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FIGURE 5.3. Height of the free surface as a function of time and horizontal distance. The initial perturbation in 
the free surface has a horizontal scale, a, of 60 km and a maximum amplitude of 50 m at t=0. The height, 

€ 

h =1000 m, f=0.0005 s-1 and g=1 m s-2. The Rossby radius is 63.2 km. The waves observed radiating away 
from the disturbed region are gravity-inertia waves, leaving behind in their wake the steady adjusted state.  
 
 Due to the perturbation, horizontal pressure gradients are created in the fluid leading to 
convergence of mass (if η0<0) towards x=x0 in the lower layer. Waves are the result. These 
waves propagate in both directions away from the source region around x=0. In the region 
around x=0 the fluid adjusts to geostrophic balance, here expressed by the following two 
equations 
 

 

€ 

g
∂h
∂x

= fv; u = 0 .      (5.9) 

 
Figure 5.3 visualises the waves and the adjustment to geostrophic balance in the centre of 
the domain. The waves are called "gravity-inertia" waves, or "Poincaré-waves". The 
dispersion relation for these waves will be derived in the following section.  
 Although the exact functional relation between h or v and x in the geostrophically 
balanced state can, in principle, be derived from eqs. 5.7 by numerical integration, it can, 
also be determined to a good approximation directly from (5.9) and (5.5) (conservation of 
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potential vorticity). Potential vorticity in the one layer model with y-derivatives set to zero is 
defined by 

€ 

ζ pot ≡
ζ + f
h

=

∂v
∂x

+ f

h
         (5.10) 

 
(relative vorticity here is ζ=∂v/∂x). If we now differentiate (5.10) with repect to x (assuming 
f is constant) and use (5.9) to eliminate ∂h/∂x, we obtain the following equation for v in the 
balanced state: 
 

€ 

d2v
dx2

−
fζ pot
g

v = h
dζ pot
dx

.        (5.11) 

 
If ζpot>0, eq. 5.11 is a differential equation of the “elliptic type”. Equation (5.11) is an 
expression of the so-called “invertibility principle”. In words, the invertibility principle 
states that the velocity distribution in the balanced state can be determined given the 
potential vorticity distribution and suitable boundary conditions. In the example discussed 
here (see figure 5.3) the potential vorticity in the final balanced state is, of course, not 
known. However, we do know that ζpot is materially conserved (eq. 5.5). If we neglect 
horizontal advection of ζpot (it is not obvious that we are allowed to do this, but for η0<<

€ 

h  
this is a reasonable assumption), the potential vorticity distribution at t=0 is identical to the 
potential vorticity distribution at any later time. We can then solve (5.11) numerically (by 
succesive over-relaxation; see problem 5.1) assuming that h(t->∞) on the r.h.s. of (5.11) is 
equal to h. This yields the solution shown by the thick dashed line in figure 5.4, which, 
within a certain distance from the place of insertion of the perturbation, is nearly identical to 
the solution of the time-dependent eqs. 5.7a,b,c after 96 hours of integration. This 
remarkable fact implies that the potential vorticity, which is inserted initially, indeed stays in 
place. In other words, the waves hardly transport (or advect) potential vorticity away from 
the source region. Since potential vorticity completely determines the balanced state, this 
balanced state therefore must be nearly identical in both cases, in spite of the presence of 
waves in one case. 
 The solution of the homogeneous part of eq. (5.11) is of the form 
 

€ 

v ∝exp ±
x
λ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ,          (5.12) 

 
where 
 

€ 

λ ≡
g

fζ pot
          (5.13) 

 
is the “Rossby radius of deformation”, named after Carl Gustav Rossby (figure 5.1), who 
was the first to identify this imporant length scale in the 1930's (see the first quote in the 
beginning of this section). Solution (5.12) implies that horizontal variations in potential 
vorticity force or "induce" a velocity field with a characteristic horizontal scale equal to 
λ . If ζ<<f the Rossby radius can be expressed as 
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FIGURE 5.4. The velocity, v, as a function of horizontal distance according to the invertibility principle (eq. 
5.11) (thick dashed line) compared to the time-dependent solution for t=72 hrs (dotted line) and t=96 hrs (thin 
solid line). The initial perturbation in the free surface has a horizontal scale, a, of 180 km and a maximum 
amplitude of 50 m at t=0. The height ,  h =1000 m, f=0.0005 s-1 and g=1 m s-2. The Rossby radius is 63.2 
km. 
 

€ 

λ ≡
gh
f

,           (5.14) 

 
i.e. as the ratio of the phase speed of surface gravity waves and the Coriolis-frequency. 
  Τhe Rossby radius of deformation can be viewed as the analogue of the deformation 
height for hydrostatic adjustment (chapter 3). The Rossby radius of deformation is the e-
folding distance characterizing the horizontal scale of the pressure perturbation in the centre 
of the domain in the final geostrophic equilibrium (figure 5.4).  
 The processes just discussed must be considered as an analogue of what happens in the 
real atmosphere when it is heated locally. The mass extracted is an analogue for the heating, 
because both effects disturb the pressure distribution as well as the potential vorticity 
distribution. The question how exactly heating influences the potential vorticity, will be 
treated in chapter12. 
 
PROBLEM 5.1. Numerical solution of equation 5.11. 
Solve eq 5.11 in the elliptic case for the interval -L<x<L with ∂v/∂x=0 at the boundaries (x=-
L and x=+L) for a prescribed perturbation given by eq. 5.8 (this determines the potential 
vorticity) for the parameter values given in figure 5.3. HINT: Use a method called 
"successive over-relaxation", which is simple to program. Divide the interval into 
subintervals of length Δx. Then v can be approximated by a set of I+1 values as v(iΔx ), 
i=0,1,2,...,I, where Δx=2L/I. Provided that Δx is sufficiently small compared to the scale on 
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which v varies, the I+1 grid point values should provide good approximations to v and its 
derivatives. Eq 5.11 can then be written in finite difference form as follows: 
 
vi+1+vi-1-2v i

Δx 2
  - Avi = B i,  

 
where vi ≡ v(iΔx),  
 

A = 
fζpoti

g   and B i  ≅  h 
ζpoti+1-ζpoti-1

2Δx
  , with ζpoti ≡ ζpot(iΔx) .  

 
Starting with a "guess-field",v (iΔx)=0, a residue, Ri, is calculated according to 
 

Ri  =  v i  -  
vi+1+vi-1- Δx 2Bi

2+A Δx 2
  .  

 
Since Ri should be equal to zero, the new "guess-value" for v(iΔx) is  
 
 vi new =  vi old  -  R i . 
 
The new "guess-value" for v(iΔx) is substituted immediately before going to the next grid 
point, hence the adjective "successive" to describe this method. The process should converge 
within several scans of the grid. You can make the iteration more accurate by correcting h 
after each scan using (5.10) with the updated gridpoint values of v. Start by computing the 
value of the Rossby deformation radius according to (5.13) in these two cases and choosing 
a suitable grid point distance and domain size. Compute and plot the solution. Compare the 
numerical solution (qualitatively) with the analytical solution (5.12). 
 
 
5.3 Gill's adjustment problem165  
 
In this section we investigate the problem of geostrophic adjustment in a special case. 
Although Rossby is the pioneer of this problem, Adrian Gill worked out the specific case 
treated in this section. The shallow water equations (5.7a,b,c) with hs=0, linearised around 
the rest state (h=h =constant) are, writing 

€ 

h ≡ h +η,  with η << h  h=h +η , 
 

€ 

∂u
∂t

= −g ∂η
∂x

+ fv ,          (5.15a) 

€ 

∂v
∂t

= − fu,           (5.15b) 

€ 

∂η
∂t

= −h ∂u
∂x

.          (5.15c) 

 
The steady state solutions of the above system are 
 

                                                
165 See chapter 7 of Adrian E. Gill, 1982: Atmosphere-ocean dynamics. Academic Press, New York.  
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€ 

u = 0, v = 0, η = 0 (state of rest) ,       (5.16) 
 
and  
 

€ 

fv = g ∂η
∂x

; u = 0 (state of geostrophic balance)      (5.17) 

 
From eqs. 5.15a-c the following equation it is derived: 
 

€ 

∂2η

∂t2
− gh ∂

2η

∂x2
+ h fζ = 0  ,         (5.18) 

 
where the vertical component of the vorticity, ζ=∂v/∂x. From eqs 5.15a-c we find the 
following invariant of motion (if f is constant) 
 

€ 

∂
∂t

ζ
f
−
η
h 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0  .          (5.19) 

 
The dimensionless quantity 

€ 

(ζ / f −η /h ) is the linearised version of the potential vorticity, 
ζpot (eq. 5.10). Eqs. 5.18 and 5.19 possess solutions of the form 
 

€ 

η = Aexp i lx −ωt( ){ },
ζ = Bexp i lx −ωt( ){ },

         (5.20) 

 
where A and B are amplitudes, l is a wavenumbers and ω is the frequency, with 
 

€ 

ω2 = gh l2 + f 2 ,          (5.21) 
 
This is the dispersion relation of small-amplitude gravity-inertia waves in the shallow 
water model. The effect of rotation (non-zero f) is to make the waves dispersive, as can 
clearly be seen in figure 5.3. 
 
PROBLEM 5.2. Gravity-inertia waves. 
(a) Show that (5.20) is indeed a solution of eqs. 5.18 and 5.19 only if (5.21) is satisfied. 
(b) Derive an expression for the phase speed of inertia-gravity waves in this model. 
(c) Derive an expression for the group velocity of inertia-gravity waves in this model. 
(d) In figure 5.3 we can observe gravity-inertia waves. How do you observe that these waves 
exhibit dispersion. 
(e) What is the phase- and group-velocity of these waves?  
(f) Compare this outcome with the theoretical prediction (eq. 5.21)? Discuss the differences. 
 
 If the initial state is known, the final (geostrophic) state can be found from eqs. 5.18 and 
5.19. Let us assume that initially the fluid system is in rest with a perturbation in the height-
field according to 
 

€ 

η = −η0sgn x( )  ,          (5.22) 
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where sgn(x)=+1 if x>0 and sgn(x)=-1 if x<0 . Clearly this represents a state of imbalance. 
Gravity-inertia waves will be generated in the region of imbalance and propagate away. The 
system will ultimately adjust to balance. This will not be the state of rest, but the state of 
geostrophic balance! The reason for this is that the potential vorticity in the initial state is 
not distributed homogeneously with respect to x, and that, because of (5.19), this 
inhomogeneous distribution of potential vorticity must be retained at each point forever. 
Initially the potential vorticity distribution is given by 
 

€ 

ζ pot t = 0( ) =
η0
h 
sgn x( ) .         (5.23) 

 
Due to eq. 5.19 this will give a final state for which 
 

€ 

h fζ =ηf 2 +η0 f 2 sgn x( ) .        (5.24) 
 
Substituting this into (5.18) and assuming ∂2η/∂t2=0 we get 
 

€ 

gh ∂
2η

∂x2
− f 2η =η0 f 2 sgn x( ) .        (5.25) 

 
The solution of this equation is  
 

€ 

η
η0

= −sgn(x) + sgn(x)exp −x sgn(x)
λ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
       (5.26) 

 
where 
 

€ 

λ =
gh
f

.           (5.27) 

 
is the Rossby Radius of deformation for the case that  f>>ζ. The height of the free surface, 
which initially is "deformed" only at x=0, is finally "deformed" over a distance of the order 
of the Rossby radius of deformation.  
 
PROBLEM 5.3. Final solution Rossby geostrophic adjustment problem. 
Derive an expression for v(x) in the final geostrophic state and sketch both h(x) and v(x) in 
the final state. 
 
PROBLEM 5.4. Energy budget of geostrophic adjustment 
The potential energy, P, and the kinetic energy, K, per unit horizontal area for the one layer 
"shallow water" model are defined as follows: 
 

€ 

P ≡ 1
2
ρ1gη

2 ,          (5.28a) 

€ 

K ≡
1
2
ρ1h u2 + v2( ) .         (5.28b) 

 
a) Show, using eqs (5.15a,b,c), that the total energy, (K+P), is conserved for a domain -
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X<x<+X, with u=0 at x=-X and at x=+X. For simplicity, neglect derivatives with respect to y. 
b) Compute the potential energy per unit length (in the y-direction), ΔP that has been 
released during geostrophic adjustment in the example discussed in this section (“Gill’s 
adjustment problem”), and compare this with the change in the kinetic energy. What has 
happened to the excess potential energy that has been released? 
 
PROBLEM 5.5. Rossby waves 
Gill’s problem explains why the atmosphere is nearly always close the geostrophic 
equilibrium, for if any force tries to upset such an equilibrium, the gravitational restoring 
force acts to quickly restore a near geostrophic equilibrium under the constraint of potential 
vorticity conservation. However, the problem is actually more complicated than is suggested 
in the previous sections where we assumed that f is a constant. If we assume that f(y), eq. 
5.19 becomes  
 

€ 

∂
∂t

ζ
f
−
η
h

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

β
f
v  ,         (5.29) 

 
where β=df/dy. We again neglect derivatives with respect to y, except in f. If, in addition, we 
make the so-called geostrophic approximation, by assuming that 
 

€ 

v =
g
f
∂η
∂x

 and therefore ζ =
g
f
∂2η

∂x2  ,       (5.30) 

 
the equation (5.29) becomes 
 

€ 

∂
∂t

∂2

∂x2
−
1
λ2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ η+β

∂η
∂x

= 0 ,        (5.31) 

 
where the parameter λ is the Rossby radius of deformation, defined according to (5.27). Eq. 
5.31 is a simplified version of the so-called “quasi-geostrophic” vorticity equation (see 
chapter 9 for further details and implications of this approximation). Eq. 5.31 has wave-like 
solutions of the form 
 

€ 

η = Aexp i lx −ωt( ){ }         (5.32) 
 
Derive the associated dispersion relation (of Rossby waves) and compare this dispersion 
relation with the dispersion relation for gravity-inertia waves (5.21). What are the most 
remarkable differences. The interpretation is facilitated if you draw both dispersion relations 
in a dispersion diagram (ω as a function of l), as in figure 3.12. We will return to the quasi-
geostrophic approximation and Rossby waves in chapter 9. 
 
 
5.4 Energetics of adjustment 
 
Let us introduce a spatial scale into the initial state in Gill’s problem by specifying the initial 
state as follows: 
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€ 

η =η0 exp −
x
a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  if x ≥ 0         (5.33a) 

€ 

η =η0 1− exp −
x
a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  if x < 0        (5.33b) 

 
instead of by eq. 5.22, which represents a Heaviside step function in which the height 
gradient is infinite at x=0. Instead, eq. 5.33 represents a smoothed Heaviside step function, 
where a represents the horizontal scale of the perturbation in the free surface height gradient, 
centred at x=0. The scale of the initial perturbation in the gradient of the height of the free 
surface is measured in units of the Rossby radius, λ. We call this measure (i.e. a/λ ) the 
“scale factor”.  
 We compute the initial available potential energy, P0, by adding the contributions of each 
gridpoint, i.e. 
 

€ 

P0 =
1
2
ρ1g η( )i[ ]

i
∑

2
.         (5.34) 

 
Here i is the index of the gridpoint. The summation in (5.34) is over all gridpoints. The 
potential energy, Pg, in the final balanced state and the kinetic energy, Kg, in the final 
balanced state is found by evaluating 
 

€ 

Pg =
1
2
ρ1g ηg( )i

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ i

∑
2
.         (5.35a) 

 

€ 

Kg =
1
2
ρ1h vg( )i

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ i

∑
2
.         (5.35b) 

 
During the process of adjustment to geostrophic balance potential energy is reduced by  
 

€ 

ΔP = P0 − Pg           (5.36) 
 
Part of this loss of potential energy goes into energy associated with the gravity inertia 
waves, which radiate away from the location of the imbalance at and around x=0. The other 
part of this loss of potential energy goes into the kinetic energy associated with the 
geostrophically balanced state. The fraction, 

€ 

Kg /ΔP , that goes into the final balanced state 
depends principally on the externally imposed value of the scale factor. The horizontal scale 
of the initial disturbance is referred to as “dynamically large” if its scale factor is larger 
than 1.  An identical exercise can be performed with the Gaussian perturbation in the height 
of the free surface (eq. 5.8).  
 In figure 5.5 we see that the balanced response to the disturbance in both cases, in terms 
of 

€ 

Kg /ΔP , is different for a dynamically large disturbance than for a dynamically small 
disturbance. The conversion of available potential energy into geostrophic kinetic energy is 
most efficient when the perturbation is dynamically large. In both cases the fraction, 

€ 

Kg /ΔP , approaches 0.5 for dynamically large perturbations 166. The conversion into 

                                                
166 This is in agreement with the results of Middleton, J.F., 1987: Energetics of linear geostrophic adjustment. 
J.Phys.Oceanogr., 25, 735-740.  
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balanced kinetic energy is very inefficient when the perturbation is dynamically small if the 
perturbation of the free surface has a Gaussian profile. In general, it may be stated that, 
when disturbances to balance are dynamically small , “the height- (or pressure-) field adjusts 
to the velocity field”167, while the reverse is the case when the disturbance is dynamically 
large. 
 In the case of Gaussian perturbation, which is perhaps the best analogue of the 
consequence of an isolated source heat, the kinetic energy that goes into the balanced flow is 
maximized in an absolute sense when the initial disturbance is comparable in scale to the 
Rossby radius of deformation. This implies that the geostrophically balanced flow velocities 
are strongest when the horizontal scale of the disturbance to balance is of the order of the 
Rossby radius of deformation (Verify this yourself from the numerical solution of eq. 5.11 
in problem 5.1).  
 

 
 
FIGURE 5.5. The geostrophic kinetic energy, Kg, in the final balanced state, relative to the absolute value of the 
potential energy, ΔP, that is released during adjustment,  as a function of the “scale factor”. The scale factor is 
defiend as the scale (a) of the initial perturbation relative to the Rossby radius of deformation, λ, derived from 
the solution of eq. 5.11. The “Gaussian” (eq. 5.8) represents an isolated perturbation in the height of the free 
surface. The “Heaviside” (eq. 5.33a.b) represents an isolated perturbation in the gradient of the height of the 
free surface. Values of other parameters are

€ 

h = 1000 m , f=0.0001 s-1 , g=1 m s-2 and η0=10 m.  
 
 
5.5 Geostrophic adjustment in a two-layer model 
 
We now formulate the invertibility principle for the two-layer model (figure 5.2), again 
neglecting derivatives with respect to y for simplicity. From the definition of potential 
vorticity (5.6) we can deduce that 

                                                
167 see p. 150 of G.K. Vallis, 2006: Atmosphere and Ocean Fluid Dynamics. Cambridge University 
Press,745 pp. 
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€ 

∂2vi
∂x2

−
∂
∂x

hi ζ pot( )i{ } = 0 .        (5.36) 

 
Suppose that there is geostrophic balance, i.e. 
 

€ 

∂Φi
∂x

= fvi  .          (5.37) 

 
From eq. 5.2a,b we have  
 

€ 

h1 =
Φ1 −εΦ2
g 1−ε( )

+ z − hs( )  ,        (5.38a) 

€ 

h2 =
Φ2 −Φ1
g 1−ε( )

 ,          (5.38b) 

 
For the heights, h1 and h2 , this implies that  
 

€ 

∂h1
∂x

=

∂Φ1
∂x

−ε
∂Φ2
∂x

g 1−ε( )
−
∂hs
∂x

=
f v1 −εv2( )
g 1−ε( )

−
∂hs
∂x

 ,      (5.39a) 

 

€ 

∂h2
∂x

=

∂Φ2
∂x

−
∂Φ1
∂x

g 1−ε( )
=
f v2 − v1( )
g 1−ε( )

 ,       (5.39b) 

 
Substituting (5.38a,b) into (5.36) we obtain 
 

€ 

d2vi
dx2

− Aivi = Bi  .         (5.40) 

 
with 
 

€ 

Ai =
f ζ pot( )i
g 1−ε( )

 .          (5.41a) 

€ 

B1 = h1
∂ ζ pot( )1
∂x

−
εfv2 ζ pot( )1
g 1−ε( )

− ζ pot( )1
∂hs
∂x

 .      (5.41b) 

€ 

B2 = h2
∂ ζ pot( )2

∂x
−
fv1 ζ pot( )2
g 1−ε( )

 .        (5.41c) 

 
This is the two-layer version of the invertibility principle, analogous to eq. 5.11. It is derived 
from the conditions of geostrophic balance in both layers (5.37) and from the definition of 
potential vorticity (5.6).  
 Let us assume the existence of a positive potential vorticity anomaly in the upper layer, 
as shown in figure 5.6. The physical mechanisms that produce this anomaly are not 
addressed here. In the lower layer the potential vorticity is constant. The solution of eq. 5.40  
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FIGURE 5.6. The potential vorticity in, respectively, the upper layer (thick solid line) and the lower layer (thin 
solid line) as a function of x. Also shown is the induced relative vorticity, according to the invertibility 
principle (eq. 5.36) in both layers (thick dashed line: upper layer; thin dashed line: lower layer). The potential 
vorticity anomaly is prescribed using the formula (5.8) (a bell-shaped perturbation) with a=300 km and 
x0=12500 km. The static stability parameter, ε=0.8, g=9.81 m s-2, f=0.0001 s-1 and hi=2000 m (for i=1,2). 
 
 
(by the method of problem 5.1) in terms of the relative vorticity in both layers for this 
potential vorticity distribution with hs=0 is also shown in figure 5.6. We see that the 
potential vorticity anomaly in the upper layer induces a relative vorticity anomaly in the 
lower layer. The potential vorticity anomaly induces a velocity field and therefore “acts 
at a distance”, much in the same way as a electric charge acts at a distance by inducing an 
electric field. This analogy will become clearer in chapter 7. 
 
 
5.6 The vacuum-cleaner effect 
 
Let us assume that 
 
 

€ 

Φi = Φ i y( ) +Φ'i x,t( )  .         (5.42a) 
 
and 
 

€ 

ui = u i + u'i x, t( ) .         (5.42b) 
 
where the time-independent state conforms to geostrophic balance, i.e. 
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FIGURE 5.7: The numerical solution of eqs. 5.40 with  u1=0 and  u2=30 m/s at t=48 hours, in terms of 
potential vorticity in the upper layer (solid line) and divergence (∂u1/∂x) in the lower layer (dashed line). The 
initial condition is a potential vorticity anomaly in the upper layer at x=0 (as shown by the thick solid line in 
figure 5.6), conforming to the invertibility principle (eq. 5.40). The amplitude of the potential vorticity 
anomaly remains constant, but the anomaly is deformed slightly at both the leading and trailing edge by 
meridional advection of “basic state” potential vorticity. 
 
 

€ 

∂Φ i
∂y

= − fu i  .         (5.43) 

 
In other words, we assume the existence of a time-independent meridional geopotential 
gradient, which is maintained by external forcing. The associated pressure gradient force is 
in balance with Coriolis force associated with a zonal flow. 
 The equations governing the dynamics of the two layers are (eq. 5.4a-c) 
 

€ 

dui
dt

= fvi −
∂φ i
∂x
,           (5.44a) 

€ 

dvi

dt
= f u i − ui( ),           (5.44b) 

€ 

dhi
dt

= −hi
∂ui
∂x
,           (5.44c) 

 
 If we now set the potential vorticity anomaly in the upper layer into motion by assuming 
that u2=30 m s-1 (u1=0), the potential vorticity anomaly will travel eastward (remember that 
potential vorticity is materially conserved), deforming slightly due to meridional advection 
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of potential vorticity associated with the meridional gradient in the basic state thickness. If 
the system adjusts to geostrophic balance in both layers continuously, the induced vorticity 
in the lower layer will necessarily also travel eastward. The associated process of 
adjustment in the lower layer requires convergence in advance of the moving vorticity 
anomaly (where ∂ζ /∂t>0) and divergence behind the moving vorticity anomaly (where 
∂ζ /∂t<0). This is illustrated in figure 5.7. Hoskins et al. (1985)168 have come up with the 
following instructive analogy of this process: 
 
One may think of an eastward-moving upper air [potential vorticity] anomaly as acting on the underlying 
layers of the atmosphere somewhat like a broad very gentle "vacuum cleaner", sucking air upwards towards its 
leading portion and pushing it downwards over the trailing portion. The vertical motion field arises in response 
to the need to maintain mass conservation and approximate balance. ... If a potential vorticity anomaly were to 
arrive overhead without any adjustment taking place underneath it, then the wind, temperature and pressure 
fields would be out of balance to an improbable extent. 
 
The induced upward motion in advance of the approaching anomaly will very likely 
generate precipitating clouds, thereby generating potential vorticity in the lower layers of the 
atmosphere. The consequences of this fact will hopefully become clearer after further study 
(see especially section 5.9). 
 
 
5.7 Complexities 
 
The problem of geostrophic adjustment becomes much more complex when we try to make 
it more realistic. One complicating aspect of the problem arrises when we explicitly impose 
side-boundaries. In the words of Geoffrey Vallis: “in a finite domain, unless viscosity is 
introduced, gravity waves will forever “slosh” without dissipating”169. What is the fate of the 
waves that are generated by the adjustment process? All we can say at this moment, relating 
to the answer to this question, is that it appears from the numerical experiments (section 
5.2), that the waves do not, or hardly, affect the potential vorticity, and therefore do not, or 
hardly, determine the geostrophically balanced state (figure 5.4), which is by no means a 
trivial statement.  
 When boundary conditions are inhomogeneous (for example, when hs(x)≠0) we find 
that the qualitative interpretation of the relation between the balanced flow v(x) and the 
potential vorticity ζpot(x) is less straightforward than is implied by the discussion in the 
previous sections. If hs(x)≠0, the balanced state of rest in the single layer shallow water 
model (section 5.2) corresponds to hs(x) +h(x)=constant. Therefore, if hs(x)≠0, then also 
h(x)≠0, which implies that ζpot(x) is not constant. Therefore, with inhomogeneous 
boundary conditions, an anomaly in potential vorticity does not necessarily imply an 
anomaly in vorticity. In the case of a fluid of constant density at rest over a mountain, 
which of course is a balanced state, we have a positive potential vorticity anomaly over the 
mountain associated with zero relative vorticity. It has been shown first by Bretherton 

                                                
168 Hoskins, B.J., M.E. McIntyre and A.W. Robertson, 1985: On the use and significance of isentropic 
potential vorticity maps. Q.J.R.Meteorol.Soc., 111, 877-946 (see page 907) 
169 Vallis, G.K., 1992: Mechanisms and parameterization of geostrophic adjustment and a variational 
approach to balanced flow. J.Atmos.Sci., 49, 1144-1160. 
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(1966)170 that an inhomogeneous boundary condition can be replaced by a homogeneous 
boundary condition if this simplification is “compensated” by including an appropriate 
imaginary potential vorticity anomaly at the boundary. In the simple example of a layer of 
constant density at rest over an isolated mountain, we would interprete the mountain as a 
negative potential vorticity anomaly located exactly at the earth’s surface and inducing a 
negative relative vorticity anomaly, which exactly compensates the positive relative vorticity 
anomaly induced by the positive potential vorticity anomaly in the interior of the fluid. 
Some details of the problem associated with inhomogeneous boundary conditions will be 
treated further in chapter 9. 
 Another complicating aspect arrises when we relax the assumption of constant 
Coriolis parameter. In fact when applying the model to the tropics we must take the south-
north (meridional) variation of f into account by assuming that 
        (4.46)  

€ 

f = 2Ωsinφ ≅ βy  .         (5.45) 
 
with 
 

€ 

β =
2Ω
a
cosφ  .          (5.46) 

 
Sometimes it is assumed that β is constant. This is referred to as the β-plane 
approximation. It is the most simple method to incorporate the gross (first order) effects of 
the sphericity of the Earth. Things become more difficult, but no less interesting, when 
account is taken of the all the subtle inertial effects of the sphericity of the Earth171. 
 A third source of complexity is related to the possibility of inertial instability (section 
1.20) in which case geostrophic adjustment is not possible without strongly non-linear 
effects that are hard to capture in a simple model.  
 
 

                                                
170Bretherton, F.P., 1966: Critical layer instability in baroclinic flows. Quart.J.Roy.Meteorol.Soc., 92, 325-
334. 
171 See e.g. Gerkema, T., J.T.F. Zimmerman, L.R.M. Maas and H. van Haren, 2008, Geophysical and 
Astrophysical Fluid Dynamics beyond the traditional approximation. Rev.Geophysics, 46, RG2004, 
doi:10.1029/2006RG000220. 

 

 

424 

 
ABSTRACT OF CHAPTER 5 

 
Chapter 5 is concerned with the process of adjustment to geostrophic balance. A 
simplified hydrostatic model of the atmosphere (one homogeneous layer) is employed to 
illustrate the fundamental characteristics of this process. Material conservation of potential 
vorticity is demonstrated for this model. It is shown that (in this simplified model) the role 
of gravity-inertia waves in the process of adjustment to geostrophic balance is analogous to 
the role of sound waves in the process of adjustment to hydrostatic balance (chapter 3). The 
velocity distribution in the geostrophically balanced state is directly related to the potential 
vorticity distribution by the invertibility Principle, which takes the mathematical form of a 
nonlinear elliptic differential equation. The linearized version of this equation can easily 
be solved numerically (given suitable boundary conditions) by successive relaxation. The 
analytic solution of the homogeneous part of this equation can be obtained analytically. 
From this solution it appears that, in the state of geostrophic balance, a positive (negative) 
potential vorticity anomaly is associated with a cyclonic (anticyclonic) wind distribution 
with a horizontal scale in the order of two times the Rossby radius of deformation. This 
scale is the analogue of the vertical “scale height” associated with adjustment to hydrostatic 
balance (chapter 3). A discussion of the energetics of geostrophic adjustment further 
illustrates the importance of the Rossby radius of deformation as a horizontal scale 
separating dynamically large scale flow from dynamically small scale flow. The 
response to a disturbance in the mass- or pressure-field that is dynamically large releases 
very little potential energy and of the potential energy that is relaesed relatively more is 
converted to kinetic energy.  
 In the latter part of chapter 5 a two-layer model is used to illustrate the concept of action 
at a distance in the vertical direction of a potential vorticity anomaly and the vacuum 
cleaner effect of a moving potential vorticity anomaly. Some of these topics are discussed 
further in chapter 7.  
 Geostrophic adjustment in the equatorial area, where the Coriolis parameter varies from 
positive to negative values with latitude is not discussed in chapter 5. It will be the subject of 
chapter 13. 
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